Evaluation of Collaborative Filtering Algorithms for Recommending Articles on CiteULike

نویسندگان

  • Denis Parra
  • Peter Brusilovsky
چکیده

Motivated by the potential use of collaborative tagging systems to develop new recommender systems, we have implemented and compared three variants of user-based collaborative filtering algorithms to provide recommendations of articles on CiteULike. On our first approach, Classic Collaborative filtering (CCF), we use Pearson correlation to calculate similarity between users and a classic adjusted ratings formula to rank the recommendations. Our second approach, Neighbor-weighted Collaborative Filtering (NwCF), incorporates the amount of raters in the ranking formula of the recommendations. A modified version of the Okapi BM25 IR model over users’ tags is implemented on our third approach to form the user neighborhood. Our results suggest that incorporating the number of raters into the algorithms leads to an improvement of precision, and they also support that tags can be considered as an alternative to Pearson correlation to calculate the similarity between users and their neighbors in a collaborative tagging system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Recommending Items in Social Tagging Systems Using Tag and Time Information

In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based ...

متن کامل

Recommending Items in Social Tagging Systems Using Tag and Time Informations

In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009